
Generating a GUI with XML/XSLT

Kristiaan Breuker

Richard Brinkman

Sander Evers

Jeroen van Nieuwenhuizen

April 7, 2000

Chapter 1

Introduction

This document will decribe a way of developing graphical user interfaces by

using a universal language. We have developed the language PLUG (which

stands for Portable Language for Userinterface Generation). PLUG conforms

to the current XML standard. Therefore it is possible to transform a generalised

user interface description to program code using an XSLT-transformer.

In chapter 2 we will describe our starting point and specify the goal of our

project. In chapter 3 we describe the construction process of PLUG. In chapter 4

we show the design steps that are necessary to translate a general user interface

description to a speci�c development environment. The speci�cs of the PLUG

style sheets are described in chapter 5 for AppBuilder (written by Kristiaan

Breuker), chapter 6 for Delphi (written by Richard Brinkman), chapter 7 for

Java (written by Sander Evers) and chapter 8 for Tcl/Tk (written by Jeroen

van Nieuwenhuizen). The scripts and toolkit are described in chapter 9.1.

We will end with the conclusions in chapter 10.

1

Chapter 2

Generating GUI code

The idea we started our project with is simple: in the design of an applica-

tion, separate the GUI from application-speci�c functionality (which we will

simply call functionality from now on). Specify the GUI in an independent

format, and from this description automatically generate the code for a destina-

tion platform: a speci�c programming language, operating system and widget

collection. This way, GUI-dependent code is not intermixed with functionality

code, so the choice for a speci�c platform can be postponed in the development

process, or the application can be easily ported to other platforms.

The simplicity of this idea soon vanishes when the following complication

comes to mind: the GUI code and the functionality code do not work inde-

pendently. The functionality code interacts with the user through the GUI, so

GUI code and functionality code have to communicate with each other; they

have to be linked to each other in some well-de�ned way. In order to achieve

complete independence of the GUI in the functionality code, there should be a

�xed interface between them. Extend this line of thought a little further, and

we would end up with our own sort of X or Java (in which the interface consists

of a virtual machine).

This was not the intention behind our design project, nor did we have enough

time for it, so we decided to set our goals di�erently: from the platform-

independent GUI description, we would only generate the static part of the

GUI: the code which creates the components and displays them for the �rst

time. The rest of the code � the dynamic part, which is linked to the function-

ality � should be manually programmed. Both parts are integrated to form

the actual GUI.

At this point, we recognized that there exist programming environments

such as Visual Café (for Java) or Delphi (for Pascal), which already do exactly

the same: generate the static code and let the programmer insert the dynamic

code. We did not see this as a problem. In fact, we found it very helpful and

made good use of it. Instead of generating the code ourselves, we could generate

the �les which the programming environment uses to generate code and save a

lot of unnecessary work.

2

Of course, this raises the question if our approach, generating the GUI from

a system-independent description, has any added value compared to drawing

the GUI in a programming environment. We feel the answer is yes: on sev-

eral occasions, it is an advantage to have a separate document describing the

interface. We illustrate this in section 10.1.

For the description of the GUI, we have used XML. Although this choice

was not of our own but of our project coaches, we will explain why it is a good

one. XML was designed as a standard for data exchange over the Internet,

across various platforms, so it matches the cross-platform nature of our project.

For example, one can design the interface on a Mac, do the additional event

programming using Linux, and generate code under Windows, without �le con-

version problems (see also section 10.1). Secondly, we can make use of the XML

tools that have already been developed by the Internet community. This way

we didn't have to write our own parser and compiler.

3

Chapter 3

Designing the DTD

3.1 General approach

By means of a Document Type De�nition (DTD) one de�nes a set of constraints

under which an XML document is valid. In other words, one de�nes a formal

language for a class of XML documents. For the purpose of describing a GUI

in a platform-independent way, we de�ned a language we call PLUG: Portable

Language for User-interface Generation. While designing the DTD, we kept two

goals in mind:

1. the language should be generic enough to translate to most platforms

2. the language should be expressive enough to describe the most frequently

used GUI concepts

The approach we used is the following: we examined four speci�c platforms

for expressing a GUI, and selected the components, attributes and events they

had in common (or could be easily simulated using existing concepts). Those

concepts were translated into a DTD (de�ning the syntax of the language),

along with a description of their semantics. The four platforms were chosen on

a basis of diversity as well as our familiarity with them:

1. Delphi: a programming environment for Pascal to create an application

with a GUI for MS Windows

2. Application Builder: a tool to create C++ applications using Motif wid-

gets

3. Java: a platform-independent OO language

4. Tcl/Tk: a platform-independent scripting language

First, GUI components (such as text input boxes, buttons, menus) were identi-

�ed which were similar to all four. We thus found 17 generic components which

4

could be reasonably mapped to every platform. We put those components in a

containment hierarchy, i.e. for every component we de�ned which components

it can contain. To express this in XML, we have mapped each component to

an XML element. Its de�nition and place in the containment hierarchy are

speci�ed in the DTD through the <!ELEMENT> construct.

Next, for every component a set of attributes was identi�ed (such as caption

text for a button, number of lines for an input box) using the same criteria.

A GUI component attribute maps to an XML attribute and is speci�ed in the

DTD through the <!ATTRIBUTE> construct. Bearing in mind that all elements

had to be translated to programming language concepts, we also introduced a

special id attribute for all elements, by which they can be referred to in the

(event) code.

Finally, we identi�ed a set of events for each component, such as click for

a button and change for an input box. As mentioned before, we do not gener-

ate code for event handling; it has to be programmed manually and integrated

with the generated GUI code. Still, we wanted the author of the XML interface

description to specify whether or not the application has to respond to certain

events. The main reason for this is to indicate our code integration mechanism

for which events it has to include manually programmed code (see chapter 4).

We accomplish this by mapping each event to a boolean-valued XML attribute.

A value of false indicates that the application should do nothing with a cer-

tain event; true indicates that additional event code should be included. To

distinguish (GUI) attributes from events in the XML description, we adopted

the naming convention that the name of an XML attribute which represents an

event has a pre�x on-, e.g. onclick or onchange.

3.2 Layout issues

One of the problems in describing an interface in a platform-independent way is

de�ning the layout of components: their position and size. Absolute positioning,

i.e. specifying everything in pixel sizes, is not a good option, because pinning

down coordinates is far too speci�c for a general description of an interface:

widgets from di�erent platforms have di�erent sizes, font sizes (in pixels) are

not known at this stage, widget sizes are sometimes customized by the user of

the platform, windows could be resized, etcetera.

Instead, some sort of relative positioning has to be used. To �nd a solution,

we've looked at the layout system which the Java AWT (Abstract Windowing

Toolkit) uses. In this system, every container component is associated with

a layout manager: an object which lays out every component in the container

using a certain policy. Every layout manager has a di�erent policy. For example,

BorderLayout can put four components along the four borders of the container,

and another one in the middle; GridLayout creates a grid with components of

equal size; and FlowLayout lets components �ow like text, from left to right,

wrapping around the edge.

In the �rst version of PLUG, the container components window and panel

5

have some coarse layout functionality similar to Java layout managers. They

have an attribute layout, which speci�es one of the three possible layout styles:

border, horizontal and vertical. Inside a container, you can nest other

containers with a di�erent layout style, so a complex layout can be composed

with several nested panels. Such a combination of the three layout styles cannot

create every possible layout, but it is expressive enough to create a coarse layout

sketch of a GUI. In future versions of PLUG, layout options could be re�ned.

The border layout Every component in a container with a border layout

should specify its position in the container with an attribute position. This

attribute can take the values top, bottom, left, right and center. At every

position, there can be at most one component, so there can be at most �ve com-

ponents in a container with a border layout (of course, one of these components

can be another container with more components inside). If there is a component

at the position top or bottom, it sticks to the top or bottom of the container,

takes up all the horizontal space, and just the vertical space it needs. If there is

a component at the position left or right, it sticks to the side of the container,

takes up all the vertical space, except that needed for components at the top or

bottom, and just the horizontal space it needs. If there is a component at the

position center, it takes up all the remaining space.

The horizontal layout In a container with a horizontal layout, all compo-

nents are allocated their needed space, and put next to each other from left to

right, in the order in which they appear in the XML document. If the compo-

nents have a di�erent height, their (vertical) centers are aligned. For containers

with this layout, there is another relevant attribute which de�nes the layout:

the layoutalign attribute. If it is assigned the value begin, the row of com-

ponents sticks to the left side of the container. With the value end, it sticks to

the right, and with center it stays in the middle.

The vertical layout The vertical layout is very similar to the horizontal

layout. Components are put in a column from top to bottom, their horizontal

centers are aligned, and layoutalign controls whether the column sticks to the

top, bottom or middle of the container.

3.3 Fonts and colors

As not all fonts are supported on all platforms, and we didn't want to bother

with a di�cult font replacement mechanism, we decided to support only three

very general types of font-family: serif, sans serif, and monospace (typewriter).

It is up to the code generation mechanism or the used GUI library to translate

these general types into a speci�c font-family.

Furthermore, there are three attributes to control font style: bold, italic and

underline. Assigning a boolean value to one of these attributes forces the font

6

to use a speci�c style (if it can). Otherwise, the font style is unde�ned and may

default to user preferences.

Colors, used as foreground or background of a component, present a similar

situation: not all colors are supported everywhere, so we de�ned a set of (very)

basic color names. The code generation mechanism or the GUI library maps

this name to a value. If no color is speci�ed, the eventual color is unde�ned and

may default to user preferences.

Both font and color options leave much room for re�nement in future ver-

sions of PLUG. We hope there will emerge widely used platform-independent

standards for specifying font and color.

7

Chapter 4

Transforming the description

using XSLT

To transform a PLUG document into platform-speci�c �les (either actual code

or interface description �les for a programming environment), we use XSLT

1.0[W3Cb], a W3C recommendation of November 1999. XSLT is an XML-

compliant language for describing transformations from one XML document

into another. After the source XML document and the XSLT document are

parsed, the transformation is performed by an XSL processor. This program

interprets the transformation rules described in the XSLT document, applies

them to the source XML document and hereby creates an output document.

Although this document is usually also an XML document, it can as well be an

unformatted plain text document. As you will soon notice, we rely heavily on

this feature in our project.

4.1 Graphical notation

In order to show how we designed the processes of document transformation,

we will �rst introduce a graphical notation to depict those processes.

• A rectangle with a small fold in it represents a �le.

• An ellipse represents a transformation process. This process may have

several inputs, which are represented by incoming arrows (pointing from

�les to the process), and several outputs, represented by outgoing arrows

(pointing from the process to �les).

• A small stick man represents a developer. A developer produces �les; this

is indicated from by an arrow from a developer to a �le.

A three-letter label in the description of a �le indicates the format of a �le:

• (XSL) indicates an XSLT document

8

• (XML) indicates an XML document (which is not also an XSLT document)

• (TXT) indicates a non-XML text document: either a �le (containing GUI

data) which is used by a speci�c programming environment, or code in a

speci�c programming language.

• (BIN) indicates a binary, executable program (e.g. a .exe �le for Windows,

or a .class �le for Java)

With font and line style, we indicate how speci�c a certain �le is:

• Italic font indicates that a �le is platform-speci�c. If the entire process is

applied to produce GUI code for a di�erent platform, �les with italic font

have to be changed. Normal font means they don't have to be changed.

• Dashed line style indicates that a �le in application-speci�c. If the entire

process is applied to produce GUI code for a di�erent application, �les

with dashed line style have to be changed. Solid line style means they

don't have to be changed.

4.2 High-level design

In chapter 2 we have given a general description of what our transformation

process should accomplish: from a platform-independent description (describing

the static part of the GUI) and some manually created platform-speci�c code

(describing the dynamic part of the GUI), it has to generate GUI code for a

speci�c platform. This is expressed, using our graphical notation, in �g. 4.1.

To generate a GUI for a speci�c platform, the developer delivers two doc-

uments: a PLUG (XML) document (which can be used again to generate the

same GUI on another platform), and a document containing platform-speci�c

event code for that GUI. The format of the latter document is not yet de�ned.

It de�nitely contains code, which would imply a TXT format, but it also has to

be structured in another way, because the developer has to tell the transforming

process which code applies to which event. Therefore, we have put a question

mark after the format.

These two documents are the input to the transformation process, which

we will re�ne in the next section. For now, this process just �does the magic�

and delivers a text document. (In most actual cases, it will probably deliver

multiple documents, but we will also ignore that for now.) This text document

is either a GUI description �le for a speci�c programming environment like

Delphi or code in a programming language like Java. In the former case, the

document is processed by the programming environment and will eventually

result in compiled code; in the latter, it is simply processed by a compiler.

9

event code
(TXT?)

our transformation

GUI code
(TXT)

programming environment
(including compiler)

executable
program

(BIN)

PLUG
GUI description

(XML)

Figure 4.1: High-level design

10

4.3 Re�ning the design

The initial design is now re�ned (and a modi�ed a little). We have already

mentioned the reason for the �rst change: the document containing the devel-

oper's event code has to be structured for further processing. As we intend to

handle (most) processing with XSLT, it is logical that this document be in XML

format. In this way, tags surrounding a text node with event code contain the

information required to link this piece of code to a speci�c component and event

type.

It is not desirable to write the complete XML document from scratch. Typ-

ing in the correct XML header and tags is a tedious and time-consuming job.

It is easy to generate the XML framework for this document from the PLUG

description (remember from section 3.1 that this description indicates for which

events custom code should be added), so the developer needs only insert code

in the speci�c programming language.

This modi�cation is shown in the upper part of �g. 4.2: taking the PLUG

description as an input, a framework (still platform-independent) is created and

delivered back to the developer. The developer �lls in the platform-speci�c code

to produce the document called �event code�.

Next, a re�nement is made: all the static GUI code is derived apart from

the event code, and put into a separate document. This document also has to

contain some meta-information de�ning where to insert the event code. This

would imply XML format, but we've added another question mark. The reason

is that it is not immediately clear how to implement the following process -

merging the static code and the event code - with two XML documents for

input. Of course, we will return to this problem in the following section.

4.4 Implementation using XSLT

The basic building block for our implementation, which is shown in �g. 4.3,

is the XSL processor. We have used LotusXSL from IBM Alphaworks, a Java-

based XSL processor. To access it from the bash command line, we used a small

wrapper class called XSL Converter. It takes three arguments: an input XML

�lename, an XSLT �lename, and an output �lename.

The �create event code framework� process is implemented by running XSL

Converter with the PLUG document as input, and an XSLT document which

transforms it into a code framework like this:

<codeframe>

...

<code id=�okbutton� event=�onclick�>

<!-- You can enter your code here -->

</code>

...

</codeframe>

11

event code
(XML)

integrate static GUI code
and event code

GUI code
(TXT)

programming environment
(including compiler)

executable
program

(BIN)

PLUG
GUI description

(XML) create
event code
framework

empty
event code
framework

(XML)

generate
static GUI code

static
GUI code
(XML?)

Figure 4.2: Re�ning the design

12

event code

(XML)

XSL

Converter

GUI code

(TXT)

programming environment

(including compiler)

executable

program

(BIN)

PLUG

GUI description

(XML)
XSL

Converter

empty

event code

framework

(XML)

XSL

Converter

static GUI code

including XSLT commands

to insert event code

(XSL)

rules for generating

code framework

(XSL)

rules for

generation of

static GUI code

(XSL)

Figure 4.3: Implementation using XSLT

13

The rules in this XSLT document tell the XSL processor to create a root

tag named <codeframe> and, for every occurrence of a true-valued event at-

tribute in the input document, create a <code> tag with matching id and event

name attributes. Note that this XSLT document is platform-independent and

application-independent, so it appears with solid line style and normal font.

The �generate static GUI� process is also implemented by processing the

PLUG document with an XSLT document. However, the transformation rules

of this document are not as easy to describe. They make up the core of our

entire code generation process, and are quite di�erent for each platform (hence

the italic font in �g. 4.3). For every platform we examined (see section 3.1),

we have created such an XSLT document; they are discussed one by one in the

next chapters.

The last process to be implemented is the integration of the custom edited

event code into the static GUI code. With a little �abuse� of the XSLT mech-

anism, we also managed to do this using XSL Converter. Although it consists

mainly of plain text, we make the output document of the previous process

technically an XSLT document, with XSLT commands at the places where the

custom code is to be inserted. These commands tell the XSL processor to insert

code within a speci�c tag from the input XML document, i.e. the event code

from the developer.

4.5 Dealing with multiple output �les

The implementation described above would work �ne if only one output text

�le is needed. In practice, all the platforms we examined use more �les for the

de�nition of an interface. Typically, there is one �le for the whole application,

and one �le for each window. Because it is not (yet) possible to generate multiple

output documents from one input document with XSLT, we have made the

decision to split up our input document accordingly: one XML �le for the

application, and one for each window.

Because the application output �le typically tells something about the win-

dows in the application, the application input �le must contain references to

the window input �les. These references cannot be dereferenced during XSLT

processing, because XSL Converter can only read from one input �le. There-

fore, we chose to include the window �les in the application XML document

using the <!ENTITY ... SYSTEM �...�> mechanism; this way, dereferencing

happens during the XML parsing, prior to XSLT processing.

This approach has a drawback: since the window �les are included in the

middle of the application XML document, they must not begin with an <?xml>

heading and <!DOCTYPE> declaration. Consequently, they are not complete

XML documents by themselves. Because we do want to use them as such,

we simply concatenate the standard heading and the window description when

needed.

All this is shown in �g. 4.4. The processes labeled �transform window�

represent (instances of) the entire transformation process as discussed above

14

window 1
event code

application
output file

application
w/ XML heading

window 1
w/o XML heading

window 2
w/o XML heading

include

window 1
w/ XML heading

window 2
w/ XML heading

concat

concat

<?xml ...>
<!DOCTYPE ...>

transform
application

transform
window

transform
window

window 1
output file

window 2
output file

window 2
event code

Figure 4.4: Multiple input and output �les

(indicated in �g. 4.1 as �our transformation�). Since our PLUG language does

not de�ne events on the application itself, the application input �le does not

have to be integrated with event code, so the process labeled �transform applica-

tion� does not need an extra input. It is implemented with one XSL Converter

process. This process requires another platform-speci�c XSLT document, which

transforms the PLUG description directly into the application output �le.

15

Chapter 5

PLUG for AppBuilder

In this chapter I will describe how a PLUG description of an application is

transformed to a number of documents from which CDE's Application Builder

(AppBuilder for short) can create a working program.

First I will give a short description of AppBuilder and describe which trans-

lations are to be made when creating AppBuilder input documents. I assume

that the reader is familiar with CDE and AppBuilder.

Then I will discuss some design problems and AppBuilder shortcomings I

came across when creating the XSL documents necessary for the translation of

PLUG XML documents to AppBuilder input documents. I will also describe

the speci�c decisions I had to make while implementing PLUG for AppBuilder.

Finally I will point out some improvements that could me made and why

they should be made.

5.1 AppBuilder

5.1.1 Introduction

Application Builder (AppBuilder for short) is a program which can be used to

create simple applications for the Common Desktop Environment.

Windows can be designed using a graphical interface and code can be added

later on, by de�ning events for the di�erent components used in a window.

AppBuilder generates the necessary Motif C++ code and make�les to make

a working CDE application.

5.1.2 AppBuilder Input Files

AppBuilder projects consist of two types of �les: a .bip project �le, which

contains general project information, and a number of .bil module �les, which
describe each of the project's windows.

The PLUG XML �les (an application �le and some window �les) can be

mapped one to one to AppBuilder input �les (a project �le and some module

16

Figure 5.1: A window with a border layout.

Top

Left Center Right

Bottom

�les). The resulting �les can be read by AppBuilder to generate C++ code and

make a working application.

5.2 Design issues

5.2.1 AppBuilder Disadvantages

Because AppBuilder is designed to be used by both experienced and non-

experienced users, much of the functionality of CDE cannot be implemented

using only AppBuilder. A number of attributes from our application and win-

dow documents could not be implemented. In some cases I found a workaround,

but in most cases these functionalities are not supported by this version of the

AppBuilder XSL �les (see also section 5.3 on Future Developments).

5.2.2 Layout Issues

We have de�ned three layout styles, i.e. horizontal, vertical and border layout.

I did not have much trouble implementing these layout styles, because although

AppBuilder can work with a pixel layout in which all components have an abso-

lute position, it is also possible to de�ne positions relative to other components.

This means components are attached to the edge of a window or to another

component.

In a horizontal and vertical layout only the �rst element in the row is attached

to the top resp. left edge of the window. The following elements are attached to

their preceding elements. All elements are vertically resp. horizontally centered

in the window.

The border layout is slightly more complicated. The border layout consists

of �ve areas, which are top, bottom, left, right and center (see �gure 5.1). The

top element is attached to the top, left and right of the window and the bottom

element is attached to the bottom, left and right of the window. The left and

right element are attached to the left resp. right edge of the window and to the

top and bottom elements, if such elements exist, otherwise to the edge of the

17

window where no element is de�ned. The center element is attached to the top,

bottom, left and right elements, if such elements exist, otherwise to the edge of

the window.

I have tried to minimize the number of panels used, which makes the XSL

�le a bit complicated, but the output .bil �le more readable and more e�cient.

Extra panels are only placed when

• elements are placed on a window when no panel is de�ned. AppBuilder

allows components only to be placed on a control panel, so when no panel

is de�ned, a panel has to be inserted.

• elements are placed in a border layout when no panel is de�ned. When,

for example, an element (which is not a panel) is placed in the top region

of a border layout, this element is placed onto a new panel which covers

the top region of the border layout.

• a horizontal or vertical layout is de�ned and the layoutalign attribute

is set to 'middle'. An extra panel is placed on the existing panel to make

it possible to center all the contained elements.

• a popup menu is assigned to an element other than a panel. Because only

panels can heva popup menus, an extra panel has to be inserted. This

panel will have the same dimensions of the element that is placed on it,

so it looks like the element contains the popup menu.

When extra panels are inserted, I use the following naming convension:

• When an extra horizontal or vertical layout panel is inserted, this new

panel is called �@id_middle�.

• When a panel for the top, bottom, left, right or center region of a border

layout are inserted, this new panel is called �@id_top�, �@id_bottom�,

�@id_left�, �@id_right� or �@id_center�, according to the position of the

panel.

• When a popup panel is inserted, this new panel is called �@id_popup�.

5.2.3 Implementing Common Attributes

Here is an overview of how I have implemented the common attributes and which

decisions I had to make to implement them. For element-speci�c attributes see

section 5.2.4 on PLUG Elements Mappings and for the implementation of events

see section 5.2.5 on Event Implementation.

• id

The id attribute is mapped onto the name attribute all AppBuilder com-

ponents have. In some cases, for example panels or checkable menuitems,

the actual AppBuilder name can di�er from the given id in the windows's

XML �le.

18

• colors

In our window DTD ten colors are de�ned (black, white, blue, green,

red, yellow, gray, magenta, cyan and brown). AppBuilder de�nes col-

ors for components by naming the colors according to our de�nition,

so I had no problem implementing the attributes foregroundcolor and

backgroundcolor.

In fact, de�ning colors in a window XML �le is more �exible than as-

signing colors to components in AppBuilder, because for example within

PLUG it is possible to color menu items individually, whereas AppBuilder

can only color whole menus.

• state

Because all components in AppBuilder have an active property, the state

attribute is easily implemented by inserting an active property which is

�true� when �enabled� and �false� when �disabled�.

• fonts

Because AppBuilder has no support for fonts, I have left out the attributes

fontname, fontitalic, fontbold and fontunderline. I could leave these

out, because without these attributes, text is still readable.

• position (see also section 5.2.2 on Layout Issues)

When non-panel elements have a position attribute, an extra panel is

inserted to place the element on. When a panel has a position attribute,

the attachments of the panels are set accordingly to it's position.

• popup

In AppBuilder, a popup menu can only be assigned to a panel, so a new

panel is inserted when this attribute is set on a non-panel element on

which the element is placed (see also section 5.2.2 on Layout Issues).

5.2.4 PLUG Element Mappings

In this section I will discuss how I implemented element-speci�c attributes. I

will do this by a per-element description of the attributes of all of the PLUG

elements. For implementation of the events, see section 5.2.5 on Event Imple-

mentation and for implementation of the common attributes see section 5.2.3

on Implementing Common Attributes.

• application

The id attribute is used for the name of the AppBuilder project. The

guiversion attribute is used to check if the correct version of PLUG is

used. The text attribute is not used by AppBuilder.

• window

For a window a normal base-window is used.

The window's id attribute is both used for the module's �lename and the

module's name. A window also has a guiversion attribute to check for

19

the correct version of PLUG. The text attribute is used as the window's

label property. When mainwindow is set to �true�, this window is the �rst

window to show up when the application is started and when the mainwin-

dow is closed, the application is shut down. There can only be one main

window. Because AppBuilder has no support for windows with an image

as background, I omitted this attribute. The layout and layoutalign

attributes are implemented according to our speci�cations (see section 3.2

on Layout styles). When resizable is set to �true�, the window can be

resized, otherwise is cannot be resized. The visible attribute is used

to set the window's initial visible state by setting the window's visible

property.

• button

For a button a push-button is used.

The text attribute is used for the button's label. Because AppBuilder

only supports text or an image to be set as a label, I didn't implement the

image attribute.

• statictext

For a statictext a string label is used.

A statictext contains lines, which are set as the label's label property,

individual lines seperated by newline characters (\n).

• input

For a one-line input a text-�eld is used, for a multiline input a text-pane

is used.

I had to split this element up into two di�erent elements: a one-line ele-

ment and a multiline element. When the numberoflines attribute is set

to �1� (the default value), a text-�eld is inserted, otherwise a text-pane

in inserted. When charsonline is set, the width of the text-�eld/-pane

will be set to this value. The word-wrap property for a text-pane is set

to what the wordwrap attribute is set to. Scrollbars will be added to a

text-pane according to the scrollbar attribute.

• menubar

For a menubar a menu-bar container is used.

This container contains menu-items.

• menuitem

For a menuitem a item-for-menu is used (or when in a menubar item-for-

menubar).

The label of the item-for-menu is set to whatever the text attribute is.

For the same reason as with the button, the image attribute is not im-

plemented.

I had to �nd a workaround when implementing checkable menuitems, be-

cause AppBuilder has no support for them. When the checkable attribute

is set to �true�, not one, but two item-for-menu's are inserted, one with

name �@id_on� and with an �x� prepended to the label and one with

20

name �@id_o��. When the checked attribute is is set to �true�, @id_on

is visible, otherwise @id_o� is visible. Some code is added to implement

'check' behaviour. The code for the menuitem's events is added to both

inserted menuitems.

• menuseparator

For a menuseparator a item-for-menu is used with label-type set to sepa-

rator.

AppBuilder supports multiple line-styles for separators, but because PLUG

doesn't support this feature, I just used the standard etched-in line-style.

• menu

For a menu an item-for-menu (or when in a menubar item-for-menubar)

and a menu are used.

For a submenu a item-for-menu has to be inserted �rst. The id attribute is

given to this menu item and a submenu with name �@id_menu� is inserted.

The menu property of the menu item is set to �@id_menu�. The text and

image attributes are used in the same way as with the menuitem.

The tearoff attribute of the menu is used for the inserted submenu.

• checkbox

For a checkbox a nonexclusive choice is used.

Because a choice exists of a number of choices, each with it's own name, a

choice with only one item-for-choice is inserted. The id property is used

for the choice's name and the item-for-choice's name is @id_item. The

choice's choice-type property is set to �nonexclusive�, which will create

a checkbox group.

The text attribute is used for the item-for-choice's label property. The

checked attribute is used for the item-for-choice's selected property.

• radiogroup

For a radiogroup an exclusive choice is used.

The text attribute is used as the choice's label property. The choice's

choice-type property is set to �exclusive�, to create a radio group.

• radioitem

For a radioitem a item-for-choice is used.

The text attribute is used as the item-for-choice's label property. The

item-for-choice's selected property is set to the radioitem's checked

property. Only one radioitem in a radiogroup can be 'checked'.

• popupmenu

For a popupmenu a menu is used.

The text attribute is not used. The tear-off property of the menu is

set to the popupmenu's tearoff attribute.

• list

For a list a list is used.

21

Table 5.1: Panel border-frames
@bevel @border border-frame

none none �at

none sunken etched-in

none raised etched-out

sunken - shadow-in

raised - shadow-out

If numberoflines is speci�ed, the num-rows property of the list is set to

@numberoflines, otherwise it is omitted. When the selectmode attribute

is set to �single�, the selection-mode of the list is set to �browse� and when

selectmode is �multiple�, selection-mode is set to �browse-multiple�. I

have chosen for the browse selection modes, because I think it makes

the resulting list easier to use. With the browse selection modes, a user

can press the mouse button on an item and then use the mouse to scroll

through the list. When using the non-browse selection modes, a user can

only select items by directly clicking on them.

The list items are stored as lines within PLUG. AppBuilder requires all

items to have a name, so the contained lines are implemented as separate

item-for-list elements, each with a name �@id_itemn�, where n is replaced

by the position() of the line within the list. Because items are stored as

plain lines, there is no way to have certain items already selected, so the

select property for all item-for-list elements is set to false. The label of

each item is set to the text() within the line tag.

• panel

For a panel a container with container-type relative is used.

Because panels in AppBuilder don't have both a bevel and a border prop-

erty, the bevel and border attribute are mapped onto the border-frame

property as described in table 5.1.

The layout and layoutalign attributes are implemented according to

our speci�cations (see section 3.2 on Layout styles). Layout panels are

inserted when necessary.

• image

For an image a label with label-type image is used.

In the XML document a source name is speci�ed without the .gif exten-

sion. The generate script for AppBuilder takes care of the conversion from

the GIF format to the XPM format. A label is inserted with a label-type

�image� and the label property set to the speci�ed source, with the �.gif�

extension appended to it, which in necessary because the image converter

creates �lenames ending with .gif.xpm.

• progressbar

For a progressbar a read-only scale is used.

22

A scale is inserted and the read-only property of the scale is set to

�true�. The orientation, min-value, max-value, initial-value and

show-value properties of the scale are set to orientation, min, max,

initvalue and showvalue attributes, respectively. When orientation

is �horizontal�, the direction property is set to �left-to-right� and when

orientation is �vertical�, direction is �bottom-to-top�. These are the

most natural ways of �lling the progressbar. Increment is set to 1 and

decimal-points is set to 0.

• scale

For a scale a scale is used.

A scale is inserted and the read-only property of the scale is set to �false�.

The orientation, min, max, initvalue and showvalue attributes and

the direction and decimal-points properties are used in the same way

as with the progressbar. The increment property of the scale is set

accordingly to the incrementvalue attribute.

5.2.5 Implementing Events

In this section I will describe all events that can be speci�ed in a PLUG docu-

ment. Events in AppBuilder are de�ned as connnections between components

or from a component to code. There are prede�ned connections to change the

state or text of components, but because PLUG doesn't support those, all has

to be done in plain C++ code, so all connections are from an element with

action-type 'execute-code'.

Note: When using the quote (�) character, you should escape it like this: \�.

• oncreate, ondestroy

Each of the PLUG elements can have an oncreate and an ondestroy

event. The connection's when property is set to �after-create� and �destroy�

respectively.

• onshow, onhide

A number of elements can have an onshow and an onhide event. For a

show event the connection's when property is set to �popup� for a pop-

upmenu and to �show� for the rest of the elements. For a hide event the

connection's when property is set to �hide�.

• onclick

A number of elements can have an onclick event. For a checkbox the

when property is set to �toggle�, for a menu to �popup� and for the rest

of the elements to �activate�.

• onchange

A number of elements can have an onchange event. For a scale the when

property is set to �value-changed�, for the rest of the elements to �text-

changed�.

23

An exception is the radiogroup element. For each of the radiogroups'

radioitems a connection is made from that radio item with the when

property set to �activate�. This is because there is no such thing as an

onchange event for a radio group in AppBuilder. A disadvantage is that

the code is executed twice, once for the item being deselected and once

for the item being selected, so if the code may only be activated once, be

sure to test if the code should be activated, for example by checking the

state of the calling item.

• onselect

A list can have an onselect event. The connections's when property is

set to �item-selected�.

5.3 Future Developments

5.3.1 Produce C++ Code

Because AppBuilder has certain shortcomings (see section 5.2.1), it may be a

better idea to produce native Motif C++ code instead of AppBuilder �les. This

may result in more complicated XSL �les, but it will produce much more �exible

and e�cient code.

In this way, it will be possible to work around the drawbacks of AppBuilder.

It would, for example, be possible to create native checkable menu items instead

of creating two text menuitems (see 5.2.4 on menu items).

AppBuilder also produces a lot of 'garbage' along with useful program code.

This could be implemented much more e�cient, making the application only

contain code it really uses.

5.3.2 Some Element Improvements

The implementation of some of the (attributes of) elements could be improved.

• It is not possible to have both an image and text on a button or menu

item. Now only text is shown, but when only an image is speci�ed, the

speci�ed image could be displayed, something which isn't done at this

time.

• Both the progressbar and the scale have a property decimal-points. This

is used to display number with a decimal fraction. The last decimal-points

digits of the value of the progressbar/scale are displayed as decimal frac-

tion and only integer values can be assigned to a progressbar/scale.

To support non-integer values a conversion to integer values with a decimal-points

value could be implemented.

• Popup menus have an attribute text, which is to be used the menu's title.

This attribute isn't used right now, but could be used in the future.

24

5.4 Conclusions

With this version of PLUG for AppBuilder, it is possible to generate code for

applications which are described using the PLUG XML standard. I had some

trouble implementing certain elements and attributes, but I managed to solve

those problems to make working version of PLUG for AppBuilder.

As I stated in section 5.3, there are a number of improvements that can

be made, such as more e�cient code and the implementation of some more

attributes, but that may be done in a next version of PLUG for AppBuilder.

25

Chapter 6

PLUG for Delphi

First I will introduce the speci�c design decisions that had to be made for

the translation from PLUG to a working Delphi 5.0 application. The design

decisions are mentioned and an explanation for the choices is given. I assume

that the reader is familiair with programming in Delphi.

Finally I will give a summary of improvements that can be made together

with some explanation why I think they should be implemented.

6.1 Design Decisions

6.1.1 Layout issues

Unfortunately it is impossible to do all the layout in the Delphi style-sheets.

Delphi works with coordinates to position the components. There are no com-

mands to place component A beside component B. To do that you have to cal-

culate the coordinates by setting B.Left to A.Left+A.Width. The problem is

that the Delphi style-sheet does not know the Width of a component, because

it is dependent on various aspects, such as fontsize, screen resolution and some

other Windows settings. So it impossible to do the whole layout in style-sheets.

Although the style-sheets have this drawback, they are not completely useless.

In fact the most layout issues are done in the style-sheets.

For each component the following layout properties are set:

Anchors In Delphi each component1 has an Anchor property which is a

set of TAnchorKind = (akTop, akLeft, akRight, akBottom). If for instance

akBottom is in the set Anchors than the space between the bottom of the com-

ponent and the bottom of the window or the panel in which it resides is constant.

It is possible to set both akTop and akBottom. Then the component will grow

if the window or panel grows.

1Delphi makes di�erence between a component and a control. I will call them both com-

ponents from now on.

26

Tags All components have a Tag property. The Tag property is not used in

Delphi. I will use this property to set the layout (border, horizontal or vertical)

and, in the case of horizontal or vertical layout, the layoutalign (begin, middle

or end). LayoutUnit (see section 6.1.1.1) will use this value to do the actual

layout.

The most signi�cant nibble (= 4 bits) can have the following values:

• 1 = Horizontal layout

• 2 = Vertical layout

• 3 = Border layout

• 4 = For extra inserted panels2

The least signi�cant nibble is used for panels and forms with a horizontal or

vertical layout and can have the following values:

• 0 = Begin align

• 1 = Middle align

• 2 = End align

Delphi �feature� Delphi likes to make a mess of the order in which compo-

nents appear3. The order in which the components appear in the DFM �le4 will

not necessarely be the same as the order in which Delphi places the components

on the desktop. All components without a TabOrder property5 are created �rst

and then the other components are created (in the order you have speci�ed). I

have worked around this problem setting the Tag property of Labels and Images

(the only two components without TabOrder) to the value that the TabOrder

property would have had if it existed. In the LayoutUnit (see below) the original

order is restored.

6.1.1.1 LayoutUnit.pas

Of course only setting the Tag values of panels and forms will do nothing. You

have to read the Tag values at run-time to decide which layout have to be used

for the panel or the form. LayoutUnit.pas, which is automatically added to the

Delphi project �le (.DPR) and each unit (.PAS), exports three functions:

2Extra panels are inserted if the border-layout is used. Every component in a borderlayout

is placed in its own panel (with the correct Align property).
3The people at Borland will call that a feature . . .
4Delphi separates the layout and the functionality in di�erent �les. A DFM-�le contains

the description of the graphical user interface (which components are used and what is there

position on the screen). A PAS-�le contains the functionality.
5The TabOrder property speci�es in which order the components are selected when the

user presses the TAB-key.

27

1. function MinWidth(WinControl: TWinControl): Integer;

This function returns the minimal width needed to display the WinControl

(= panel or form).

2. function MinHeight(WinControl: TWinControl): Integer;

This function returns the minimal height needed to display the WinCon-

trol (= panel or form).

3. procedure LayoutWinControl(WinControl: TWinControl);

This procedure will do all the layout of the WinControl. It will automati-

cally make recursive calls to itself to do the layout of the panels inside the

WinControl. So you do not have to call LayoutWinControl for each panel.

Only for the main panel you have to call this procedure. By the way you

do not have to call this procedure yourself, because it is automatically

called in the constructor of the window.

6.1.2 Design desicions made for each tag that is de�ned

in PLUG

6.1.2.1 Application

The id-attribute is used for the name of the project-�le. The value cannot be a

Delphi reserved word such as begin, function, . . . The text-attribute is used for

the title that will appear in the Windows taskbar. The guiversion-attribute

is checked to ensure that only PLUG 1.0 �les are being parsed, because future

versions of PLUG will have features the current parser has not.

6.1.2.2 Button

All the common options (see section 6.1.3) and the onclick-event (see section

6.1.4) are implemented for the button. The button-tag will be mapped on a

TButton for a button without image and TBitBtn for a button with an image.

The text-attribute is used for setting the button's caption (the text on the

button). When an image-attribute is given the Glyph property will be loaded

with the GIF-image.

6.1.2.3 Statictext

All the common options (see section 6.1.3) are implemented for the statictext.

The statictext-tag will be mapped on a TLabel if zero or one line-tag is placed

inside the statictext-tag. A TEdit is used if more line-tags are inserted. The

TEdit will look like a TLabel (no Tabstops, no BorderStyle, buttonface color

and not enabled). The height of the TMemo is calculated in the stylesheet.

Note that the stylesheet will not be able to calculate the correct height if you

use a di�erent font-size.

28

6.1.2.4 Input

All the common options (see section 6.1.3) and the onchange-event (see section

6.1.4) are implemented for the input. The input-tag will be mapped on a

TEdit if the numberoflines-attribute is less than 2 and a TMemo otherwise.

The height of the TMemo is calculated in the stylesheet. Note that the stylesheet

will not be able to calculate the correct height if you use a di�erent font size.

The numberofchars-attribute is not used because there is no restriction of the

number of characters for both a TEdit and a TMemo. The wordwrap-attribute

and the scrollbar-attribute are only used for a TMemo.

6.1.2.5 Menubar

All the common options (see section 6.1.3) are implemented for the menubar.

The menubar-tag will be mapped on a TMainMenu.

6.1.2.6 Menuitem

All the common options (see section 6.1.3) are implemented for the menuitem.

The menuitem-tag will be mapped on a TMenuItem. When the image-attribute is

given then the Bitmap property is loaded with the GIF-image. The checkable-

attribute is being ignored because in Delphi all menuitems are checkable. The

checked-attribute is used to set the initial state of the Checked property. To

(re)set the checkmark at run-time you have to change the Checked property in

the onclick event handler. This will not be done automatically.

6.1.2.7 Menuseparator

The menuseparator-tag will be mapped on a TMenuItem with Caption='-'.

6.1.2.8 Menu

All the common options (see section 6.1.3) are implemented for the menu. The

menu-tag will be mapped on a TMenuItem. The text-attribute is used for the

caption of the menu. The image-attribute will be used to set the Bitmap prop-

erty. The tearoff-attribute will be ignored since this feature is not common in

Windows.

6.1.2.9 Checkbox

All the common options (see section 6.1.3) are implemented for the checkbox.

The checkbox-tag will be mapped on a TCheckbox. The text-attribute is used

for the caption of the checkbox. The checked-attribute is used for the initial

value of the Checked property.

29

6.1.2.10 Radiogroup

All the common options (see section 6.1.3) are implemented for the radiogroup.

The radiogroup-tag will be mapped on a TRadioGroup. The text-attribute is

used for the Caption property of the radiogroup.

6.1.2.11 Radioitem

All the common options (see section 6.1.3) are implemented for the radioitem.

The radioitem-tag will not be mapped on a TRadioItem. Instead, the text-

attributes of all radioitems belonging to a radiogroup are used to set the value

of the Items property of the radiogroup.

6.1.2.12 Popupmenu

All the common options (see section 6.1.3) are implemented for the popupmenu.

The popupmenu-tag will be mapped on TPopupMenu. The text-attribute will be

ignored because in Windows popupmenus do not have titles.

6.1.2.13 List

All the common options (see section 6.1.3) are implemented for the list. The

list-tag will be mapped on a TListBox. The numberoflines-attribute is used

to guess the height of the listbox. Only with the normal font the height

of the listbox will be correct. The selectmode-attribute is used to set the

MultiSelect property.

6.1.2.14 Panel

All the common options (see section 6.1.3) are implemented for the panel. The

panel-tag will be mapped on a TPanel. The Autosize property will be set to

True, although this is not stricty necessary. There seems to be a Delphi bug

regarding the Autosize property. If you change sizes at run-time, the Autosize

feature does not seem to work correctly. So in the LayoutUnit (see section

6.1.1.1) the Autosize property of panels will �rst be set to False (to make it

possible to change the size) and later put it back to True. This is how it works.

The BevelInner and BevelOuter properties are set according to the bevel-

and border-attribute. If the parents layout-attribute is set to �border� than

the position-attribute will be used to set the Align property. The Tag property

gets a value corresponding to his own layout- and layoutalign-attribute (see

section 8.1.3)

6.1.2.15 Image

All the common options (see section 6.1.3) are implemented for the images. The

image-tag will be mapped on a TImage. The source-attribute is used in the

constructor of the window in which the image resides to read the GIF image

from �le with the following construction:

30

Table 6.1: Translation of colors
PLUG Delphi

black clBlack

white clWhite

green clGreen

red clRed

yellow clYellow

gray clGray

magenta clPurple

cyan clAqua

blue clBlue

Image_Id.Picture.LoadFromFile(Image_Source);

6.1.2.16 Progressbar

All the common options (see section 6.1.3) are implemented for the progressbar.

The progressbar-tag will be mapped on a TProgressbar. The min- and max-

attributes are used to set the Min and Max properties. The initvalue-attribute

is used to set the Position property. The orientation-attribute is used to

set the Orientation property. The showvalue-attribute is ignored because a

TProgressbar is not able to display a value in the progressbar.

6.1.2.17 Scale

All the common options (see section 6.1.3) are implemented for the scale. The

scale-tag will be mapped on a TTrackBar. The min- and max-attribute are used

to set the Min and Max properties. The initvalue-attribute is used to set the

Position property. The incrementvalue-attribute is used to set the Frequency

property. The orientation-attribute is used to set the Orientation property.

The showvalue-attribute is being ignored because TProgressbar is not able to

display a value in the progressbar.

6.1.3 Common options

For each component the following properties are set:

Enabled Enabled will be set to True if the state-attribute is equal to �enabled�

and to False if the state-attribute is equal to �disabled�.

Color For each component having a Color property the backgroundcolor-

attribute is translated to the Windows colors (see table 6.1).

31

Font For each component having a Font property the following properties are

set:

• Font.Color is the translation of the foregroundcolor-attribute (see table

6.1).

• Font.Name is set to �Times New Roman� if fontname=�serif�, �MS Sans

Serif� if fontname=�sansserif�, �Courier� if fontname=�monospace� or left

unchanged if no fontname is speci�ed

• Font.Style is set according to the fontbold- fontitalic- and fontunderline-

attributes

Popup For each component having a Popup property, this property is set to

the popup-attribute (if present).

6.1.4 Events

Events are used to insert Delphi source code from the (generated) codeframe

into the units. Each event is linked to exactly one event handler (and each event

handler is linked to exactly one event). The event handler looks like:

procedure button1Click(Sender: TObject);

The Sender is always the component that caused the event. Note that only the

headers are generated automatically. In the codeframe you have to include begin

and end;. This to make it possible to declare constants, types and variables. A

typical codeframe could look like:

<codeframe>

...

<code id=�button1� event=�onclick�>

var I: Integer;

begin

//Do something with the variable I

end;

</code>

...

</codeframe>

oncreate For windows (or forms as they are called in Delphi) oncreate is

handled as a normal event (thus setting OnCreate to some method). Note

that the oncreate event handler is di�erent from the forms constructor. All

other component does not have an OnCreate event. For each component with

oncreate=�true� a subroutine in the forms constructor will be added with the

same functionality as other events.

32

Table 6.2: Event naming

Delphi component PLUG events Delphi events

Form onshow onhide OnShow OnHide

Button onclick OnClick

Edit onchange OnChange

Memo onchange OnChange

MenuItem onclick OnClick

Menu onclick OnClick

RadioGroup onchange OnClick

PopupMenu onshow OnPopup

List onselect OnClick

Trackbar onchange OnChange

ondestroy Ondestroy events works like oncreate events.

Other events Not all events speci�ed in PLUG are named equally in Delphi.

Take a look at table 6.2 to see the di�erences.

6.2 Possible Improvements

6.2.1 More e�cient generation of code

The Delphi source code is not as e�cient as source code written by an experi-

enced programmer. Sometimes panels are added to force layout issues whether it

is necessary or not. In a border layout for each component a panel is added. But

this is only neccessary for components without an Align property. So maybe

you could check �rst if a component has an Align property before inserting a

new Panel.

6.2.2 Calculation of coordinates in the stylesheets

In this version of PLUG for Delphi all coordinates are calculated in a separate

LayoutUnit. The reason for this was that only at run-time the precise sizes

of the components are known. This is not exactly true. It should be possible

to calculate the width of a component as a function of: the component itself,

the font family and the fontsize used, the number of characters. I think that

such a function could exist, although not easy to calculate. With �xed width

fonts (with fontname �Monospace�) this function will be easier to calculate than

with proportional fonts. But in the latter case you can approximate the sizes

by saying that the size is at most the number of character times the maximal

characterwidth (or -height). The big advantage of this method is that the layout

is already correct if loaded in the Delphi environment. Now all components are

placed on top of each other (all components have Top en Left set to zero).

33

6.3 Conclusions

PLUG for Delphi version 1.0 serves quite well in generating Delphi Source code,

although it is possible to generate more e�cient code. The layout can better be

done inside a stylesheet to see the correct layout when you load the project in

the Delphi environment. Maybe this will be �xed in the next version of PLUG.

34

Chapter 7

PLUG for Java/Swing

This chapter discusses the mapping of a PLUG description to Java code using

Swing GUI components. First, it describes a systematic way of setting up a GUI.

Then, the mapping from PLUG elements and attributes to Java components is

explained. Finally, suggestions for improvement are given and some conclusions

are drawn.

7.1 Setting up a GUI in Java/Swing

In Java, a GUI component is an object, usually an instance of a class from the

Swing package (Swing is a part of the Java Foundation Classes). The attributes

of a component are part of the state of the object and are accessed through

get() and set() methods on the object. Some components, like JPanel, can

also contain other components. Those components are added at runtime by

means of an add() method on the container component.

So, in order to completely set up a GUI component (including its children),

the following steps can be carried out:

1. Declare a variable of the class which the component belongs to

2. Create a new instance of the class, and assign it to the variable

3. Set the attributes of the object using set() methods

4. For each of its children: carry out steps 1 through 4 for it, then add it to

the parent component

And that is (almost) exactly what happens in the Java programs we gener-

ate. For each component on a window, a setup procedure is de�ned named

component-id_setup, where component-id is replaced with the value of the id

attribute of the component in question. This procedure creates the component,

sets its attributes, and (if it is a container object) calls the setup procedures of

its children. A di�erence with the steps described above is that the declaration

35

of the variable happens outside of the setup procedure, so it has a broader scope

(I will show later on that this is useful in event handling).

I have not mentioned yet in which classes these setup procedures are de�ned.

De�ning a setup method for a component in a class to which the component in

question belongs is not a good option, because it would require a new subclass

for every single component. Since we regard windows as main units in our

design, it seems a good choice to create a subclass of JFrame for each window,

and in that subclass de�ne all the procedures which together set up the GUI.

This way, the only classes that have to be generated for an application are one

main class and one for each window, just as we described earlier.

Let's focus on a JFrame subclass. When it is instantiated, �rst an empty

JFrame instance is created � a window with no contents on it, nothing in the ti-

tle bar, and some default attribute values. This window is not yet visible. Then,

the constructor of the subclass is called. This is in fact the setup procedure for

our window, except that the window is already created when it's called. It sets

some attributes (like the window title) using set() methods inherited from its

superclass, then calls the setup procedures of its children (remember, these are

de�ned in the same class), and �nally adds those children components to itself.

This last step, adding children to JFrame, is a little di�erent from adding

children to, say, JPanel. This is because JFrame is not an actual container com-
ponent, but has a container component: its content pane, which is an ordinary

JPanel. Components that appear on the window, like buttons and input boxes,

are actually on this content pane. So I create a new JPanel, add the window

children components to this panel, and then set the content pane to be this new

panel. The only di�erence is the menu bar: this component does not belong on

the content pane. It is separately set by means of a method setJMenuBar() in

JFrame.

As every window in the XML description maps to its own class in Java, the

class can be named after the window's id attribute. Every class is instantiated

exactly once. To be able to refer to a window from other windows, I have

used the Singleton design pattern from [Gam95]: a static class variable named

singleton is de�ned, containing a reference to the one instance of the class. Its

value can be obtained using the static getSingleton() method.

Fig. 7.1 shows the general framework of a Java class �le (de�ning a win-

dow) generated by PLUG. Words in italic font are not actual Java code, but a

description of code, or an indication that code between brackets is optional or

repeated.

7.2 From XML to Java via JML

The XML document describes components with attributes, and how they are

contained in each other. This XML document is mapped to a Java class de-

scribed by the framework above, by the XSLT document. It would be nice if the

containment structure in the XML document is the same as the containment

structure of the Java Swing classes; this would simplify the description of the

36

class window-id extends JFrame {

static window-id singleton;

public static window-id getSingleton()

{ return singleton; };

static { singleton = new window-id(); }

public window-id() {

setTitle(�window-title�);

set the other attributes in a similar way

setup_menubar-id();

setJMenuBar(menubar-id);

setup_contentpane-id();

setContentPane(contentpane-id);

}

and for every component on the window:

[

private component-class component-id;

private void setup_component-id() {

component-id = new component-class();

component-id.setText(�component-text�);

(and/or other attributes)

if the component is a container, for each child component:

[

setup_child-component-id();

component-id.add(child-component-id);

]

} // end setup-procedure

]

} // end class

Figure 7.1: Java class framework for a window

37

mapping (the XSLT rules).

Unfortunately, the PLUG structure is not exactly the same. For example,

in PLUG components are contained directly in the window, while in Java they

are on a panel, and this panel is part of the window. Another example: in

PLUG, a component optionally has a scrollbar. In Java, such a component is

put on a special scroll panel (a JScrollPane). The result of this is that an

XSLT document which transforms PLUG directly into Java code would contain

a lot of extra if...then rules and would be di�cult to read.

To avoid this, I have decided to perform the transfromation in two steps:

�rst from PLUG to a new XML language I call JML; then from JML to Java

code (or actually, as described in section 4.4, an XSLT document containing a

lot of Java code). The idea is that all changes of nomenclature and structure

are performed in the �rst step, so the second step can be a very direct mapping

to code. The JML language is therefore designed to be as close as possible to

Java code:

1. Every XML element represents a Swing component like JTextField, JPanel,

JScrollPane, etc.

2. The containment structure of elements in JML is the same as the contain-

ment structure of components in the Java code

3. Attribute (string) values in JML are the same as the Swing attribute values

7.3 Speci�c mappings

This section describes speci�c mappings from PLUG to Java, the encountered

problems and their solutions. These mappings are mostly performed in the

�rst transformation step. Only interesting mappings are covered; trivial ones

as �a button maps to a JButton, and its text attribute maps to a Java Text

attribute� are left out. If you are interested in those, refer to the XSLT docu-

ments themselves (the document that describes the �rst transformation step is

fairly well readable).

7.3.1 Components and component-speci�c attributes

Most PLUG components have a direct counterpart in Swing. Some components

had to be simulated using other Swing components, and especially these are

discussed here.

The window component is split up into two Swing components: a JFrame

(carrying the window's id) and a JPanel with the id contentpane. All of the

window's children are put inside the panel, except for the menubar and the

popup menus. All attributes, except for layout, apply to the JFrame.

The input component is simply mapped to a JTextField if the attribute

numberoflines has a value of 1. If not, it is mapped to a JTextArea with a

JScrollPane around it (with the id of the input concatenated with _scrollpane).

38

The attribute value of scrollbar is mapped to the attributes HorizontalScrollBarPolicy

and VerticalScrollBarPolicy. Even if the input has no scrollbars speci�ed,

the JTextArea is still placed on a JScrollPane (without scrollbars). If it would

not be, it would have the (undesired) behaviour of adjusting its visible size to the

number of lines typed in it. A list is mapped to a JList with a JScrollPane

around it, for the same reason.

In Swing, there is no component which displays uneditable multi-line text.

Therefore, a statictext is mapped to a JPanel with a vertical layout, which

contains multiple JLabel components. Attributes like state, position and

backgroundcolor apply to the JPanel; font attributes and foregroundcolor

apply to every JLabel.

A menuitem is mapped to either a JMenuItem or a JCheckableMenuItem,

depending on the value of its checkable attribute.

A radiogroup is mapped to a radiopanel in JML. This component does

not exist in Java; in the second transformation it is translated into a JPanel

with several JRadioButtons on it, which are grouped into a ButtonGroup. If

the radiogroup would have been transformed into a JPanel in the �rst trans-

formation, I would have lost the information that the panel's contents had to

be grouped into a ButtonGroup.

A popupmenu is mapped to a JPopupMenu. This component has no �xed

place on the window, so it is not part of the component containment structure

on the contentpane. Its setup procedure is called by the setup procedure (i.e. the

constructor) of the JFrame it belongs to, but it is not added to any component.

Components with a popup attribute get assigned a PopupListener, a subclass

of MouseAdapter, which tells the JPopupMenu in question to show itself at

the coordinates of the mouse click. The constructor of PopupListener gets a

reference to the JPopupMenu as an argument, so it is important that the menu is

already created at the time the event listener is created. Of the entire window,

popup menus are therefore the �rst components to be set up.

7.3.2 Layout

Since the PLUG layout types were based on Java LayoutManagers, the mapping

between them is pretty straightforward. A panel with layout=�border� is man-

aged by a BorderLayout, a panel with layout=�horizontal� by a BoxLayout

with horizontal orientation, and a panel with layout=�vertical�by a BoxLayout

with a vertical orientation. When components are added to a panel with a

BorderLayout, an extra argument to the add() method is derived from the

value of the position attribute. The layoutalignment attribute, speci�c to

horizontal and vertical layout, results in adding invisible �glue� components

to the panel; either after the other components, before them, or both.

Unfortunately, there is one di�erence between the BoxLayout and PLUG's

horizontal and vertical layouts. The latter two preserve the components'

original sizes, while a horizontal BoxLayout tries to resize the component's

height (same goes for vertical and width) to its MaximumSize value. It would be

best to write our own LayoutManager that does not have this behaviour, but to

39

reduce work I used a little workaround: I subclassed the component classes for

which this behaviour was really undesired (JTextField and JScrollPane) and

overrided their getMaximumSize() method to return their PreferredSize.

7.3.3 Fonts

There are several PLUG attributes that make up the appearance of a font:

fontname, fontsize, fontbold, fontitalic and fontunderline. In Java, a

font has the relevant attributes Name, Style, and Size. The Style attribute is

an integer indicating whether the font is bold, italic, both, or plain (underline

is not supported). These font attributes can only be set during construction of

the object; once created, a Font object cannot be changed.

This would not be a problem if the appearance of the font was entirely

determined by the PLUG description: for every component, a new Font object

would be created, immediately taking into account all the attribute values. This

is not the case. Font attributes in PLUG can be left out, meaning that platform

defaults should be used; platform defaults which are not known when the XSLT

transformation is performed. So, when some of a font attributes should use

the platform default value, and some are overridden, I have to read the font

attributes at runtime, override some of them with our own values, and create a

new font object with this set of attributes.

The way it is implemented at the moment, these font changes happen one

by one for each attribute, meaning that new objects are created unnecessarily

often. This makes the generated Java code a little ine�cient. On the other

hand, the XSLT code is shorter.

7.3.4 Events

Events in Java are handled by objects known as event listeners: they subscribe

themselves to event-producing objects, which notify them when an event takes

place. For each event de�ned in PLUG, such an event listener class is de�ned

using Java's inner class construct; an object of this class is created, and sub-

scribed to the component which produces the event. In the event listener class

(in the body of the method which handles the speci�c event), the custom code

is inserted.

This way, event code has direct access to all the window's variables (even

private ones). Since every GUI component is referenced in a variable of our

JFrame subclass, easy access to each component is provided. In the custom

code, attributes can be set and get just like this:

<code id=�button1� event=�onclick�>

input1.setText(�You have just pushed a button.�).

</code>

The only events treated di�erently are oncreate and ondestroy, since creation

and destruction of a component are not events in Java. Creation code could

40

be added inside a constructor, but this would require subclassing a component

to add a new constructor. Instead, the custom code is placed directly after a

component's attributes and children are set up. Destruction code could be added

in a finalize()method of a new subclass, but I found that in practice, objects

are not even �nalized when the program ends. I did not �nd a satisfactory way

to force this destruction, so the ondestroy event is currently not supported in

PLUG for Java.

7.4 Possible improvements

7.4.1 Move JML to a higher level of abstraction

Presently, every Swing component is mapped to a JML element, e.g. a JButton

corresponds to a <jbutton>. For every JML element, there is a separate piece

of code in the XSLT document that generates Java source code from JML.

These pieces of code are very much alike in structure, but (mainly) class names

and attribute names are di�erent. Therefore, it may be well possible to use

one general XSLT template for all components, parametrized with class and

attribute names. The JML code would then describe components on a higher

level of abstraction, and look something like this:

<component class=�JButton� id=�button1�>

<attribute name=�Text� type=�string� value=�Push me!�/>

<attribute name=�Enabled� type=�boolean� value=�false�/>

</component>

A minor drawback with this approach is that semantic checks (on the JML

document) like �every button must have a text attribute� cannot be performed

anymore by the XML parser. But, since every JML document is generated

automatically, it is less likely to contain errors than the user-created PLUG

document.

7.4.2 Custom import and declaration statements

In practice, I found out that it is very desirable, if not indispensable, to add

custom import statements (at the start of the .java �le) and declarations (at

the start of the class body). It would be easy to extend PLUG, to make this

possible.

7.4.3 Speci�c PLUG layout managers

As mentioned in section 7.3.2, I used a workaround to make the existing BoxLayout

manager work as desired. It would be better to write a layout manager which

exactly implements the desired behaviour for horizontal and vertical layout. It

could have the orientation and alignment parameters as constructor arguments.

41

7.4.4 Enhancing the scale implementation

The PLUG scale element is currently mapped to a simple JSlider, which cannot

display the numerical value. With some work, it could be mapped to a JPanel

with a JSlider and a JLabel on it, and an event listener which updates the label

to the value of the slider.

7.5 Conclusions

It is possible and not too complicated to transfrom a PLUG document into a

Java/Swing GUI. It is pro�table to perform this transformation in two steps.

Therefore, two XSLT documents have been constructed which implement the

transformation.

There is room for several improvements, which could be made in a next

version of PLUG for Java/Swing.

42

Chapter 8

PLUG for Tcl/Tk

First I will introduce the speci�c design decisions that had to be made for

the translation from PLUG to a working Tcl/Tk 8.0 application. The design

decisions are mentioned and an explanation for the choices is given. Simple

examples are used to illustrate the ideas. Knowledge of is assumed.

Finally I will give a summary of improvements that can be made together

with some explanation why I think they should be implemented.

8.1 Design Decisions

8.1.1 Common attributes.

Fonts The mappings from the font attribute to font-names are the follow-

ing: serif becomes Helvetica, sansserif becomes Arial and monospace becomes

Courier. This choices are arbitrary and better choices are possible. The choice

has been made to use the default font of the Tcl/Tk installation when a font is

not found. This means that I do not have to check whether a font exists, when

it does not Tcl/Tk automatically uses the default font of the installation. When

no font attributes are speci�ed Helvetica 10 points is used when present.

state The value of this attribute is given to the -state option of the Tk-widget.

When the Tk-widget does not have this option it is ignored. The other possi-

bility, not packing them, isn't as good as ignoring in most cases1. Not packing

them means that when they are shown later they can occur on other positions as

intended by the interface designer (due to the working of the pack command.).

So showing them seems less harmful as not showing them.

1Of course there are situation where not packing is preferable. To prevend packing in this

case the interface must be edited by hand but we advise against this.

43

8.1.2 Creation of Tcl/Tk code �les

The tcltk.xsl style-sheet is used by the generate program to create a style-

sheet (window.xsl, where window is the name of the window) for each window

and a Tcl/Tk code �le name.tcl consisting of inclusions of window.tcl �les,

when the name of the application is name (see example 1). The window.tcl �les

are created by the integrate script with use of the window.xsl style-sheets. This

gives a modular construction to the Tcl/Tk code, everything about a window is

in one �le and the program can be started with name.tcl.

Example 1 A simple example of an application.tcl and two window.tcl �les
(details not shown).

Application.tcl:

source window1.tcl

source window2.tcl

window1.tcl:

button .a

pack .a

window2.tcl:

button .b

pack .b

8.1.3 Layout issues

To preserve the name of widgets the choice was made to generate always all

frame-widgets that are necessary for a correct function of a layout style. When

this isn't done the possibility exist that by adding a element to a panel or

window may cause a already existing button to change it's name (For example

.middle.button1 becomes .middle.left.button1). This possible name change has

a negative impact on the reusibility of code any good. So the choose was made

to focus on the reusibility of code instead of e�ciency2. In the remainder of the

text I use the � to refer to the widget the element is in.

8.1.3.1 Border-layout

To be able to use the borderlayout with only the pack command some extra

panels have to be added to a window of panel with the border layout. The

reason is that the pack does not have a center option. The following panels are

created and packed to simulate a borderlayout:

1. A top frame (�.top). This frame should be on the top of it's parent so no

side option is given (the default is top) to pack. An element in it should

use the whole width so the �ll option of the pack command is set to x to

2It seems that this choice isn't necessary see section 8.3.2 on page 53 about possible use of

variables.

44

let it occupy the whole width. An element in this frame should have the

�ll option set to x and expand set to yes. It will then occupy the whole

width even when the window or panel is resized.

2. A bottom frame (�.bottom). This frame should be on the bottom so the

side option of pack is set to bottom. It should also occupy the whole width

so the �ll option is also set to x. An element in this frame should have

the �ll option set to x, the expand option to yes and the side option set

to bottom.

3. A middle frame (�.middle). This frame contains the center region which

should occupy the remaining space, so the expand option is set to yes and

the �ll option is set to both. This frame does not contain any elements

except the following frames.

4. A middle.left frame (�.middle.left). This frame should use the remaining

space in the vertical direction so �ll is set to both3 and the side option

is set to left because it should be on the left. An element in this frame

should have set the expand option to yes, the �ll option set to both and

the side option to left.

5. A middle.center frame (�.middle.center). This frame should use the re-

maining space in the vertical direction so �ll is set to both3 and the side

option is set to right because it should be on the left. An element in this

frame should have the expand option set to yes and the �ll option set to

both, it should expand on a resize in both directions.

6. A middle.right frame (�.middle.right). This frame should occupy the re-

maining space so �ll is set to both and expand is set to yes. An element

in this frame should have the expand option set to yes, the �ll option set

to both and the side option set to right.

8.1.3.2 Vertical-layout

To be able to implement the vertical layout it is necessary to put a frame called

�.vpanel on the panel or window with the vertical layout. The panel is as big

as the elements in it. When the layoutalign attribute has the value begin then

it's packed at the top. When the layoutalign attribute has the value middle it's

placed on the left (automatically centered by Tcl/Tk). When the layoutalign

attribute has the value true it's placed at the bottom. All elements that are

placed in the �.vpanel should be placed at the top. Because the �.vpanel sticks

to the bottom, left or top the elements in it are at the right position.

8.1.3.3 Horizontal-layout

To be able to implement this it is necessary to put a frame called �.hpanel on

the panel or window with the vertical layout. The panel is as big as the elements

3Should be y, but both have the same e�ect because expand is set to no.

45

in it. When the layoutalign attribute has the value begin then it's packed at the

left. When the layoutalign attribute has the value middle it's placed on the top

(automatically centered by Tcl/Tk). When the layoutalign attribute has the

value true it's placed at the right. All elements that are placed in the �.hpanel

should be placed at the left. Because the �.hpanel sticks to the left, top or right

the elements in it are at the right position.

8.1.4 Events

oncreate Tcl/Tk doesn't have a oncreate event but it's easy to implement this

if you look when a oncreate should occur: when a element is created(=packed).

So I just call the oncreate event just after the pack command which puts (cre-

ates) the element at its place. And the oncreate event is handled4.

Example 2 A simple oncreate example.

button .vpanel.button1 -text �Ok�

pack .vpanel.button1 -side top

button1oncreate

ondestroy Tcl/Tk has a ondestroy event called Destroy. The only thing I

have to do is to bind the code to the destroy procedure which has the name

element-id ++ ondestroy. This means that a button with id=�button1� will be

bind to button1ondestroy.

onchange (Radiogroup) This event does not exist in Tcl/Tk. It is simulated

by binding a onclick to the radioitems. This indicates that a onchange event

may have occured when a radioitem is clicked. To accomplish this an onchange,

containg the value of onchange, and a proc variable, containing the name of the

omchange procedure, if any, are passed to the radioitem template.

onchange (Input) There is no onchange event in Tcl/Tk. For this reason I

use the Onleave event to simulate the onchange event. This indicates that when

a onchange event (in fact a Onleave event) occurs in the Tcl/Tk code there may

be a change. The code of the user should check whether a change has occured

or not.

onselect There is no onselect even in Tcl/Tk. For this reason I bind a left

mouse button click to the window. To select an item you have to click the

mouse-button which means that there is also a mouse-click event when a should

occur. For this reason it's logical to use the mouse click event to simulate a

onselect event. The onselect event has now the meaning that a selection or

deselection may have occured. The user code should handle this.

4Simple but e�ective.

46

onclick The onclick event is standard binded to the -command option. This

means that given the name of the onclick procedure to the -command option

will give the desired behavior.

onclick (Menubutton) The menubutton already has a standard onclick event:

opening the associated window. To give the possibility to use an onclick event

I bind an extra onclick event to the menubutton. When the menu is mapped to

a cascading entry the name of the onclick procedure is given to the -command

option of the menu add command of the parent menu.

onshow The onshow event is binded to the Map event of Tcl/Tk.

8.1.5 Input

The input tag which logical would be mapped to the text-widget is �rst placed

on a panel and then mapped to the text-widget. The reason for this is that I

might want to use scrollbars which in Tcl/Tk are not part of the text widget

but are �stand-alone�. When the value of the scrollbar attribute is something

else as none then appropriate scrollbar-widgets must be created and connected

to the text-widget. When these scrollbars are not placed on a panel with the

text-widget, problems will arise when the window is resized.

The charsonline and numbero�ines attributes are ignored5 in case of a bor-

derlayout when other elements demand that the horizontal or vertical space

should be bigger as speci�ed by these attributes. This is necessary to conform

to the borderlayout standard.

8.1.6 Radiogroup

There is no radiogroup in Tcl/Tk. Radioitems are grouped together by a com-

mon variable. Therefore there will be created a frame for the Radiogroup. This

frames contains a frame which will contain the radioitems. The command vari-

able is passed by the radiogroup template to the radioitems template.

8.1.7 Progressbar

In Tcl/Tk there is no widget to map a progressbar to. To simulate a progressbar

code is generated to simulate one with the help of coloring a canvas-widget.

8.1.8 Window

The visible attribute of the window tag has no function when the mainwindow

attribute has the value true. On some windowing systems not ignoring it may

cause problems to ever see it and Tcl/Tk is portable to many windowing systems,

which means I also must generated portable Tcl/Tk code.

5In run time due to the fact that the expand option may be yes and the �ll option may be

x, y or both

47

The window may contain frames to implement the behavior of the desired

layout (see section 8.1.3 on page 44).

8.2 Implementation of tags and their attributes

8.2.1 Common Options

backgroundcolor and foregroundcolor These attributes are used to set

the -bg and -fg options of the Tk-widgets. The value of the attribute is copied

which means that in fact PLUG for Tcl/Tk can use undocumented colors as

speci�ed in rgb.txt6.

Fonts Font attributes are set with the -font { fontname size otheroptions } of

the Tk-widgets. The default it is set to -font {Helvetica 10}.

popup A popup menu should be showed when the element(s) it belongs to

is/are right clicked. So I use the bind statement for the element to execute the

tk_popup command with the name of the popup menu and the mouse position

as parameters.

state When a Tk-widget has a -state option the value of the state attribute

is used as value for this option.

8.2.2 Application

The text attribute of the application is ignored. The reason for ignoring the

text attribute is simple the name of the main window is used for the naming of

the task-bar and program-list entries.

8.2.3 Button

A button tag will be mapped to the button-widget.

image To be able to use an image it should be created �rst. There for there

the image will be created before the creation of the button. The image is given

to a variable called @id ++ img. After this the button is created with the

-image option set to $@id ++ img.

Example 3 A simple example illustrating the code generated to display a image
on a button.

set button1img [image create photo -file image.gif]

button .hpanel.button1 -image $button1img

pack .hpanel.button1 -side left

6You should not use them if you want your application to be portable to di�erent GUI-

platforms.

48

8.2.4 Checkbox

A checkbox tag is mapped to the checkbutton-widget.

checked The checkbutton doesn't have a option to set the checked option

direct. But by Tk a variable is associated with the checkbutton-widget. So by

setting this variable to 1 if checked is true and 0 is checked is false it's possible

to implement this feature.

8.2.5 Image

The image will be displayed using a canvas-widget. The �rst thing that has to

be done is the creation of an image. After that a canvas widget is created with

the -width and -height options set to the width and height of the image. When

it is resized the canvas will change size the image won't. The image stays in the

left upper corner. The third step is packing the canvas to its �parent�. After

that a the create image command of the canvas is called with the image position

in the left upper-corner.

8.2.6 Input

charsonline This option is used to specify the -width option of the text-

widget.

numbero�ines This option is used to specify the -height option of the text-

widget.

8.2.7 List

The list tag will be mapped to a listbox-widget.

numbero�ines The numbero�ines attribute speci�es the number of lines that

should be shown, but this attribute is ignored5 in case of a borderlayout when

other elements demand that the vertical space should be bigger. It sets the

-height option of the listbox-widget.

selectmode This attribute is copied to the -selectmode option of the listbox-

widget.

8.2.8 Menu

A menu is implemented by creating a menubutton when the menu is direct on

the menubar. After this a menu is associated with the menubutton. When it's

not direct on the menubar a cascading menu entry is added to the parent menu

or popupmenu.

49

image The image is handled in a similar fashion as the image attribute of

button (page: 48).

tearo� The value of the tearo� attribute is passed to the -tearo� option of

the menu.

text The value of the text attribute is passed to the -text option of the menu.

8.2.9 Menubar

There is no menubar in Tcl/Tk. The standard in Tcl/Tk is to use a frame for

this. I conform to this standard.

8.2.10 Menuitem

The menuitem is mapped to a button or checkbutton when it's direct on the

menubar. Otherwise it will be created with the add command or add checkbutton

command. The choice between button and checkbutton is based on the value of

the checkable attribute. The same goes up for the choice between add command

and add checkbutton.

checked This attribute indicates whether the checkbutton should be checked

or not. This is implemented by setting the associated variable of the menuitem

to 1, if the value of checked is true, or 0, if the value of checked is false. The

setting of the associated variable is done after the packing of the element.

image The image is handled in a similar fashion as the image attribute of

button (page: 48).

text The value of the text attribute is passed to the -label option in case of a

item not direct on the menubar and to the -text option when the menuitem is

direct on the menubar.

8.2.11 Menuseparator

The creation of a menuseparator is straight forward. I just do a call to the add

separator command of the menu the menuseparator is in.

8.2.12 Panel

A panel is in Tcl/Tk a frame-widget and therefore a panel is mapped to a

frame-widget. This frame-widget may contain other frames for implementing

the layout (see section 8.1.3 on page 44). A frame with no components isn't

visible in Tcl/Tk.

50

bevel This attribute is mapped to the -relief option of the panel-widget.

border The panel-widget doesn't have a possibility to set the border to raised,

sunken or �at. There for the choice is made to simulate this by giving a �at

border the borderwidth of 0 (-bd 0) and the other borders a bd of 2 (-bd 2).

8.2.13 Popupmenu

A popupmenu is created with the help of a popupmenu.

tearo� The tearo� attribute is used to set the -tearo� option of the menu-

widget.

text The text attribute, which is meant to set the title of the popupmenu, is

mapped to a the -label option of an add command command. No value is passed

to the -command option. This makes it can serve as a 'title bar' of the popup

menu.

8.2.14 Progressbar

In Tcl/Tk there is no widget to map a progressbar to. Therefore it is coded out.

First a procedure for updating the value of the progressbar is created. After that

a procedure for creating the progressbar is created. The a call to the creation

procedure is inserted. After that a call to the updating procedure to set the

initial value is inserted. For the exact coded I refer to the stylesheet which uses

a slightly changed version of the code for the gauge found in E�ective Tcl/Tk
programming [HM98]

8.2.15 Radiogroup

text To set the title with the value of this attribute a label widget is created

on the radiogroup frame with the -text option set to text.

8.2.16 Radioitem

The radioitem tag is mapped to a radiobutton-widget. The -variable option of

the radiobutton is set to the variable variable passed by the parent radiogroup.

The -value option is set to the id of the radioitem. When the passed onchange

variable has the value is true the Button-1 event of Tcl/Tk will be binded to

the procedure passed by the proc variable.

checked When this attribute has the value is true a call will be made to the

invoke command of the radiobutton-widget.

text The value of this attribute is passed to the -text option.

51

8.2.17 Scale

The scale tag is mapped to the scale widget. The -variable option is set to the

@id ++ var which makes it possible to change the value of the scale by chaning

the variable with the name @id ++ var.

incrementvalue Passed to the -resolution option.

initvalue To set the initvalue of the scale the associated variable (@id ++

var) is set to the value of initvalue.

max Passed to the -to option.

min Passed to the -from option.

orientation Passed to the -orient option.

showvalue Passed to the -showvalue option.

8.2.18 Statictext

The statictext is mapped to the label-widget. The -text option is set to the line

in the line tags.

8.2.19 Window

The mainwindow is mapped to the standard window generated by wish on

startup. Other windows are included in a procedure and in this procedure

created with the toplevel command. The child windows can then be created by

a call to the appropriate procedure. This is standard done in the code when the

visible attribute of the child window is true.

8.3 Possible Improvements

8.3.1 More e�cient generation of code.

As mentioned before (see section 8.1.3 on page 44) will the Tcl/Tk style-sheet

always make all frames for the layout, even when there are not necessary, to

preserve the full name of an object when elements are added to the interface.

It seems that this is not always necessary to create all frames in the case of the

border-layout. For example when a panel with the border-layout only contains

a element in the top region it is not necessary to make the left, right, center and

bottom frames. This because the name of the element in the top region does

not change when a bottom, left, right or center item is added. The only reason

why this is not implemented yet is the little time that was left for the project.

52

It is not di�cult but it will take a lot of time (from my perspective, with a fast

approaching deadline) to distinguish between all possible cases.

In fact it seems that for the top and bottom elements of the border-layout no

panels are ever needed, but I have not researched this good enough, it depends

on the features of the Tk-widgets, to be absolutely sure.

8.3.2 Using Variables

The Tcl/Tk-code is not always as optimal as possible. This because of the choice

to try to preserve names of the widgets when new elements are added to the

window. The use of variables could make the Tcl/Tk-code much more e�cient

and readable. It also hides the interface code from the event-code programmer.

To use variables I only need a unique variable that contains the full path of

the widget. The id attribute of the element, which is unique, could be used for

this (see example 4). With this variable it becomes possible to make the code

more e�cient (frames are left out when they are not needed.) without having to

change the event code when elements are added because the variables are used.

Example 4 example of the use of variables to make the code more e�cient and
more readable.

Code without variables:

button .printdialog.vpanel.button1 -text �Ok�

pack .printdialog.vpanel.button1 -side left

Code with variables:

set button1 .printdialog.vpanel.button1

button $button1 -text �OK�

pack $button1 -side left

8.3.3 Using Procedures

When the variables as introduced in section 8.3.2 are used it becomes possible

to use procedures for the creation of the elements in a window. This makes

the code much more readable. A simple example (see example 5) will show the

general idea. The procedures could be placed in a special �le which always is

included in the application.tcl �le.

Example 5 Simple example of the use of procedures.

proc createbutton { elementname text side } {

button $elementname -text $text

pack $elementname -side $side

}

set button1 .printdialog.vpanel.button1

createbutton $button1 �Ok� left

set button2 .printdialog.vpanel.button2

createbutton $button2 �Cancel� left

53

8.3.4 Reducing the lines of code

It might be possible to reduce the lines of code in the style-sheet by splitting

it up in di�erent style-sheets and including them in the main style-sheet. This

would make the style-sheet easier to read and much easier to maintain.

8.3.5 Improving Comments and Indents

The layout of the generate code is not ideal on this moment. The comments

could be clearer and a better indentation could make the code more readable.

8.4 Conclusions

The generation of Tcl/Tk code with PLUG is possible. The generation of code

is straightforward for mast tags. Only for tags wherefor there are in Tcl/Tk no

standard widgets causes some minor problems, which were solveable by coding

these widgets out.

The Tcl/Tk-code that's generated from PLUG could be made more e�cient.

The focus of the project was however more on reusibility of event code when

the interface is changed than on e�cient code generation. As mentioned before

it seems possible to preserve the reusibility of event code when the code is made

more e�cient with the help of procedures and variables. But to implement this

in a structured way the entire style-sheet must be rewritten.

54

Chapter 9

Tools: scripts and a graphical

alternative

9.1 Use of shell scripts

We make an extensive use of shell scripts to achieve the implementation showed

in �gure 4.4. It is only tested for the bash shell under Unix, but probably

more shells will work correct too. Even under other operating systems such as

Windows it is possible to run the bash shell (with Cygwin).

There is one central script where the whole story starts. This script is called

�generate� and is located in the users bin/plug directory (or another directory

which is added to the path). This generate script is not language dependent. It

will do some basic stu� that is needed for every language:

1. It starts by making links in the destination directory to the DTD's used

in PLUG.

2. Then the already existing codeframe are backed up.

3. Then the application XML-�le is parsed with the (general) application2codeframe.xsl

style-sheet. This will make another script containing commands to make

a codeframe for each window in the application. After this script is called

it is removed.

4. After the new (empty) codeframes are generated, they are compared with

the backed up codeframes. With help of di�3 a new codeframe is made,

containing all the already entered code from the old codeframe and the

new code-tags.

5. At last the language-speci�c generate script is invoked. This script is lo-

cated in the language directory under bin/plug (i.e. bin/plug/delphi/generate).

55

Because the language-speci�c generate script is language-speci�c it is impossible

to describe it in such a detail as in the case of the general scripts. But the

common thing of all language-speci�c generate scripts is that they have to create

the static gui-code (see �gure 4.3) and a script named �integrate�, which is

responsible for the integration of the code from the codeframe.

9.2 Graphical alternative

For the point-and-click-generation it is also possible to use the tool RICK (Rapid

Interface Construction Kit). This toolkit o�ers the same kind of functionality

as the scripts described in section 9.1. It is a development environment for

PLUG. You can load a project and display the windows it contains and edit the

corresponding codeframe. It is very easy to use. You only have to specify the

correct target and to click on the �generate� and �integrate� buttons.

56

Chapter 10

Conclusions

10.1 Applications

The main bene�t of PLUG is that it describes a graphical user interface without

a commitment to a speci�c implementation, and that several di�erent imple-

mentations can be quickly derived from it without a lot of manual coding. We

think that there are several practical occasions where this bene�t comes to its

full potential:

• Some applications, such as internet-based client-server applications, have

implementations on multiple platforms. For users, it is easy if the user

interfaces look the same on di�erent platforms. PLUG makes it easy to

achieve this. Changes in the interface which do not involve changes in

functionality (i.e. moving a button, rearranging menus) can be instanta-

neously applied to all implementations without modifying a single line of

code.

• In the practice of Software Engineering, it is very important to have docu-

ments which precisely determine the design of a system, without mention-

ing any implementation details. Several engineers who are working on the

project need to rely on such documents to make their own design or im-

plementation decisions. An XML description of an interface can function

as such a design document.

• In a large project, the person designing the interface is often not the person

programming it. With PLUG, a cognitive ergonomist (for example) can

de�ne the interface outside of a speci�c programming environment.

• Tree-like information structures such as PLUG menus can be generated or

modi�ed by other applications that use XML technology. For example, a

menu describing a product hierarchy can be automatically generated from

a product information database using XML and XSLT.

57

10.2 Future work

10.2.1 Make�les

In the future it is necessary to make the generate script more e�cient with the

help of make�les. The current version of the generate script of PLUG generates

all �les when invoked even when this is not necessary. Using make�les can help

to reduce this by only regenerating �les for which the source has changed.

10.2.2 Import statements

For a better integration of the program code and the interface it seems like

a good idea to put some kind of input statement in the code-frames. This

allows the programmer to specify some source code �les which are needed by

the program-code in the code-frame. The integration of pure program code

and interface code will become easier this way, because the programmer does

not have to edit the generated �les by hand anymore to include the include

statements.

58

Bibliography

[app] Common Desktop Environment: Application Builder User's Guide.
http://www.tru64unix.compaq.com/faqs/publications/

base_doc/DOCUMENTATION/V50_HTML/APPBLDR/TITLE.HTM.

[CH99] Alex Ceponkus and Faraz Hoodbhoy. Applied XML, a Toolkit for
Programmers. Robert Ispen, 1999.

[Gam95] Erich Gamma. Design Patterns, Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[HM98] Mark Harrison and Michael McLennan. E�ective Tcl/Tk Program-
ming, Writing Better Programms with Tcl and Tk. Addison-Wesley,

1998.

[jav] Java 2 Platform, Standard Edition v1.2.2 API Speci�cation.
http://java.sun.com/products/jdk/1.2/docs/api/index.html.

[MST95] Aaron Marcus, Nick Smilonich, and Lynne Thompson. The Cross-GUI
Handbook, For Multiplatform User interface design. Addison-Wesley,

1995.

[tcl] Tcl 7.6 / Tk 4.2 Manual.
http://velociraptor.mni.fh-giessen.de/TclTk/tcltk-man-html.

[W3Ca] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath.

[W3Cb] W3C. XSL Transformations (XSLT) Version 1.0.
http://www.w3.org/TR/xslt.

59

